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The Netherlands 
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Abstract. In a microscopic crystallographic model with incommensurate phases, the mag- 
netoelastic DIFFOUR model, phase transitions at the paraphase boundary are connected 
to bifurcations of a symplectic mapping. Special attention is paid to the ferro-antiferro 
transition at the paraphase boundary and its implication on the incommensurate pans of 
the phase diagram. I t  is shown that the feerro-antiferro transition at the paraphare boundary 
is related to the crossing of a degenerate bifurcation point in the mapping. As such, the 
transition has been called a bifurcation transition. 

1. Introduction 

Over the past few decades, the study of incommensurate structures has led to the 
development of microscopic models that explain their occurrence. We!! studied are 
the Frenkel-Kontorova (FK) model [ 11, the anisotropic (or axial) next-nearest-neigh- 
bour Ising (ANNNI)  model [2] and the discrete frustrated +4 (DIFFOUR) model [3]. 
The search for ground states in these models has been related to symplectic mappings 
by Aubry and Le Daeron [4] for the FK model, by H ~ g h  Jensen and Bak [ 5 ]  for the 
ANNNI model and by Janssen and Tjon [ 6 ]  for the DIFFOUR model. 

This paper deals with the magnetoelastic DIFFOUR model, an extension of the 
DIFFOUR model. In section 2 the model is described. In section 3 a mapping, associated 
with the stationary condition, is introduced and in section 4 bifurcations ofthis mapping 
are related to the phase transitions at the paraphase boundary. In section 5 the phase 
diagrams of the magnetoelastic DIFFOUR model are presented. The ferro-antiferro 
bifurcation transition is then considered separately in section 6. Extended details have 
been put in the appendices. 

2. The magnetoelastic DIFFOUR model 

The magnetoelastic DIFFOUR model describes a chain of particles, embedded in a 
three-dimensional environment$. The particles have a local +4 two-state spin character, 
rnrougn wnicn mcy are wupicu vy i iai i i iui i i~  I I C X L - I I C ~ ~ C X  niiu ~rtagcts~uciasu~ I I C ~ K S L -  

neighbour bonds. Furthermore, the particles are bound by ordinary harmonic springs. 

7 Present address: Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65,  I018 XE 
Amsterdam, The Netherlands. 
$One may think of the 'one-dimensional' interaction between uniformly organized stacked layers. 
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The free energy at zero temperature ( T  = 0) of such a chain is 

where x. is the local spin variable and 1. is the stretching of the intermediate intervals 
between the successive particles with respect to some equilibrium distance. a and y 
give shape to the local potential (a (0 and y>O) ,  p. =pco'+p"'/f l  is the (linear) 
magnetoelastic nearest neighbour and 8 the harmonic next-nearest-neighbour coupling 
constant. K is the strength of the interparticle bonds and P stands for the external 
pressure. 

To obtain a phase diagram, we have to find the ground states (configurations with 
lowest energy) of the model. The ground states are among the stationary states which 
are found by the requirement that 

- 0  
8F 
Jxn 
_- 

and 
JF _-  - 0. 
J In 

From (3) we find that 

(3) 

Substituting (4) in the expression, obtained from (2), we find that 

ax,  + rx'. + (p'o'-Pcll !) (21" --x.-j -x.+,)+ 6(2x, -X"->-X"+*) 
K 

P'"* 
+- - [ ( x n  -xn-,)3+(xH -x,+1)3~ =o. ( 5 )  

2 K  

However, this is just the stationary condition following from the effective free energy 

Y P  E s 
. 2  4 2 4 2 FcR = 1 +- x*, +- (x. - x" - , )~  +- (x. - x,_, )~+-  (x, - x._.)~) (6)  

with 

We observe that takes account of the pressure and F of the magnetoelastic coupling. 
The original DIFFOUR potential equals FcH if the magnetoelastic coupling is turned off 
(p"'=O). as it should. 

Furthermore, it turns out that, since E is strictly negative, the magnetoelastic 
coupling tends to destabilize the chain. I f  E < -y/16 the free energy has no lower 
bound and hence the model has no stable ground state. 



Hence we may account for temperature in the following way 

a - a + y T  P H P + ~ E T  (9) 

where T = ((xi) -(xJ2) is a measure of the thermal fluctuations, i.e. temperature (in 
appropriate units)t. 

3. The mapping 

The stationary condition (5) can be written, accounting for temperature by (91, as 

We may look at  (10) as a four-dimensional mapping 

Application of M to an arbitrary starting configuration of four points produces a 
unique continuation of the chain as a stationary configuration. One should recognize, 
however, that these stationary configurations do not have to be ground states; in fact 
most of them are not. 

The linearized mapping has the following form 

t In this approximation, we assume that the fluctuations of I. are coupled strongly to the fluctuations of x.. 
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where at the paraphase (x, = 0 for all n) 

LI + 2 @ + 2 S + ( y + 8 e ) T  
s A =  

r..- ,*m,:I -.-I. ̂ ^ ^ _ ^  , . .~-~:---~:-.-, . . .~-.~I. a... : .... J L  .-.. rrvm II  can uc GVIIUUUCU ~rr~rircu~arc~y uiai L L ~ C  ~riapp~rig U syr~ipircuc anu nence 
that the eigenvalues of the linearized mapping come in pairs or four-tuples (if A is an 
eigenvalue, A* and A - ‘  are also eigenvalues) [6 ] .  

The bifurcations of this mapping have been studied thoroughly [6,7] and it is 
known that a bifurcation to a structure with modulation vector q occurs as a pair of 
eigenvalues collides on the unit circle at exp(iq). For instance, if the eigenvalues collide 
at q = T, the bifurcation is period-doubling and if the collision occurs at q = 0, there 
is a period preserving bifurcation. 

4. Phase transitions at  the paraphase boundary 

The paraphase is the phase with x . ~  = 0 for all n. From the 44 character of the energy 
it follows directly that the only way in which there can be a phase transition, is in a 
smooth way, i.e. there are only second-order phase transitions at the paraphase 
boundary. Hence at the paraphase boundary, the paraphase has to be marginally stable. 

Janssen and Tjon [ 6 ]  related second-order phase transitions to bifurcations in the 
symplectic mapping. They found that if the linearized mapping has an eigenvalue A 
on the complex unit circle, the configuration is marginally stable in the direction of 
the eigenvector. A proof of this proposition is stated in appendix A. 

The symplecticity of the mapping leaves no other possibility than that the second- 
order phase transitions at the paraphase boundary occur simultaneously with a collision 
of eigenvalues of the linearized mapping at the unit circle. This is in fact what happens: 
a collision of eigenvalues on the unit circle at exp(iq) corresponds to a soft mode with 
wavevector q. 

5. Phase diagrams 

By an analysis similar to the one of Janssen and Tjon [3], using the mapping to find 
the exact phase boundaries for the paraphase (see appendix B) and numerical calcula- 
tions to study the other phases, some phase diagrams have been constructedt. The 
phases (n) in the figures correspond for n even to a phase with a periodic continuation 
of respectively n / 2  ’spins up’ (x.>O) and n / 2  ‘spins down’ (x,<O), and for odd n 
to a phase with a periodic continuation of respectively ( n  + 1)/2 ‘spins up’ and ( n  - 1)/2 
’spins down’. 

In figure 1 the T = 0 phase diagram is depicted. In the neighbourhood of the point 
r R = 6 = 0 !he diggrcm seems !c exhihi! ;r mu!!iphase point: This is not the case, however. 

t By a proper gauge in all calculations (I and y have been fixed to (I = - y  = -1 .  The magnetoelastic coupling 
in all calculations has been chosen as e = - & ,  right in the middle of the allowed interval (-&,O], as a 
proper representant of the magnetoelastic case. 
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6 

Figure 1. T = 0 phase diagram of the magnetoelastic DIFFOUR model (z = -A). The region 
(5 ) / (m)  contains a fan of phases from (5) to (w). 

It is just the remnant of the multiphase point that does exist in the original DIFFOUR 

model ( E  =O)t .  
It turns out that the 8 < 0 part of parameter space is the interesting part with 

incommensurate phases. If S > 0, the p- T phase diagram (that may be interpreted as 
the P- T diagram) consists of just three regions: a para, a ferro and an antiferro phase. 

In figure 2 the p - T  phase diagram (that may be interpreted as the P-T diagram) 
(with a=-+) is presented. One can distinguish four regions: a para phase, a ferro 
phase, an antiferro phase and a region with higher commensurate and incommensurate 
phases. It shows much resemblance to the phase diagram of the DIFFOUR model ([SI, 

l 0 r i 7 - - - l  E 

- 1  0 1 2 

P 

Figure 2. 8-T diagram of the magnetoelastie "IFFOUR model ( a = - f . e = - h ) .  The 
hatched regions contain iniermediaie phases. 

t If E =O, the energy at 8 = 6 = O  in givcn by v = x ,  -fx:+i.x'. and the ground state is degenerate: all 
configuration with panicles at positions I or - I  have the same energy density U = -a.  I f  E # 0 this multiphase 
point is destroyed. 
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figure 10). This is not surprising, since the magnitude of the magnetoelastic coupling 
is very small. 

6. The ferro-antiferro bifurcation transition 

A picture that is totally different from figure 2 is obtained if one considers a 6-T 
:ec:lo:: :hrough pa:a-e:e: space. 

The stability boundaries of the para, ferro and antiferro phase have been calculated 
explicitly (see appendix B). For three different values of p the stability boundaries of 
these phases have been drawn in the 6-T diagram in figure 3. 

6 6 

Figure 3. Stability boundaries of the para (P), ferro (F)  and an t i fem (AF) phase (dashed 
lines denote boundaries of metastable states) ( a )  before the bifurcation transition ( E  = 
-1/32,B =1/16), ( h )  at the bifurcation transition ( c  =-1/32,p = 118) (the AF phase is 
metastable), ( c )  after the bifurcation transition ( e  = -1132. p =3/16);  ( d )  the behaviour 
of the eigenvalues of the linearized mapping (from the paint of view of the para phase) 
around the phase transition (at 8 > O )  in complex plane is illustrated, following a path of 
decreasing temperature. 
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Two different regimes are distinguished: 

p <Q: 
p > $ :  

the antifemo phase borders the para phase 

the ferro phase borders the para phase 

In between the two regimes, if p = b ,  the situation is degenerate. 
To observe what happens, the behaviour ofthe eigenvalues of the linearized mapping 

(from the point of view of the para phase) around the phase transition (at 6 > 0) has 
been illustrated, following a path of decreasing temperature. 

Above the phase transition, the four eigenvalues are on the real axis, two of them 
on the positive and two on the negative side. As temperature is decreased, the 
eigenvalues approach the unit circle. The actual type of phase transition is determined 
by whether the positive or the negative eigenvalues reach the unit circle first. If the 
posiiive eigeiivaiues reach the unii circie first, there is a para-femo transition, otherwise 
the para phase borders the antiferro phase. 

At the bifurcation transition, both pairs of eigenvalues arrive at the unit circle at 
the same instant and the period-doubling bifurcation occurs simultaneously with the 

Figure 4. Phase diagrams of the magnetoelastic 
D l f F o L i ~  model ((I) before the bifurcation transition 
(..=- 1/32, B = 1/16). ( b )  at the bifurcation 
transition i z  = - i i j i , p  = i i8j .  i c i  after thebiiurca- 
Lion transition ('8=-1/32. @ = 3 / 1 6 ) .  The vertically 
hatched regions have a period between 3 and 4, and 
the horizontally hatched region a period between 2 
and 3. The region (S)/(m) contains a fan of phases 
from (5) to (m). 
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period preserving bifurcation. Such a degenerate bifurcation occurs each time if 

p = -4&. (15) 

We can characterize the bifurcation transition by a special wavevector 

Before the bifurcation transition, if p < - 4 ~ ,  the paraphase boundary with varying soft 
mode wavevector has wavevectors in the interval (qeT, T] and afterwards, if p > -4.5, 
in the interval [0, qer). 

At the bifurcation transition, the paraphase boundary with varying soft mode vector 
is replaced, for an instant, by a (straight) boundary with a constant soft mode vector: 
qBT. The point 6 = T = 0 becomes at the bifurcation transition soft for all q E [0, a], 
The corresponding dispersion curve at that point is flat zero. 

It follows directly from (16) that q e T E  [ ~ / 2 ,  T). It is furthermore remarkable that 
the type of bifurcation depends solely on the strength of the magnetoelastic coupling. 

The impact of the occurence of the bifurcation transition on the other phases is 
investigated by numerical calculations. The resulting phase diagrams are presented in 

the incommensurate phases are trapped between the para and (anti)ferro phase on 
one side and the (4) phase on the other side. It is in that region that side effects of the 
bifurcation transition are observed. 

figure 4 (for E = -$, qsi= 1.74.. .). n.Py  shew !hi?!, i?round !he bifurrl!ion !r..si!lO., 

7. Concluding remarks 

It has been shown that the extension of the DIFFOUR model to the magnetoelastic 
DIFFOUR model displays, despite the small allowed magnetoelastic coupling, a non- 
trivial bifurcation transition. In fact, the bifurcation transition also occurs in the 
DIFFOUR model, since it is just the case E = 0. However, the characterizing vector qeT 
then Ir fixed to =/2  (corresponding to a soft mode transition to the (4) phase) and 
hence the transition is of less importance to the incommensurate phases. 

The connection of the phase transitions at the paraphase boundary with the 
bifurcations of a four-dimensional symplectic mapping has shown to provide an 
effective means of illustrating the ferro-antiferro bifurcation transition. 

It should be noted that the account for temperature in the effective free energy (6 )  
is only correct up to fourth order. A proper account of temperature requires true mean 
field calculations that give, however, less insight in the phase transition mechanism. 
It has been shown by Janssen and Tjon [9] for the DIFFOUR model that the results of 
true mean field calculations are in good qualitative agreement with the results, obtained 
by the effective mean field argument that has been used in this paper. 
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Appendix A. Relation between bifurcations and phase transitions 

Proposition (lanssen and con 161). For systems with free energy F ( { u J ) ,  fixed points 
of the related mapping problem that have eigenvalues of the linearized mapping on 
the complex unit circle are at most marginally stable configurations. 

Proof: Consider the dispersion curves 02(q)  of a configuration with period p. They 
are the eigenvalues of the dynamical matrix 

D.. =- d2F I 
au,au, 

The eigenvalue equation thus reads 

D%;E, = W ' E ~  

where E is an eigenvibration vector. By Fourier transformation, using the periodicity, 
we obtain a more convenient expression, writing j = np + m and i = n'p+ m', 

The mapping that is used, is obtained by requiring stationarity 

dF -- - 0  
dui 

and hence its linearized form is given (implicitly) by 

An eigenvector of the linearized mapping with some eigenvalue A, is an orbit with the 
following property: 

(23) E; = Enp+, = E , ' A " .  

And for the eigenvector, (22) reads 

If A in (24) equals eiq then we may identify E,, ,  as E ? )  and we find that 02(q)  =0,  i.e. 
U a soft mode with wavevector q, since (20) has to hold for all n' and m'. 

Appendix B. Explicitly calculated stability boundaries 

For the paraphase (P), the ferrophase (F) and the antiferrophase (AF) the stability 
regions have been calculated explicitly, regarding the vibration spectra. 
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By Fourier transformation we find from the dynamical equation for the paraphase 
(P) and the ferrophase (F) that 

m w 2 ( q ) = a + y T + 3 y ~ ' + 4 ( P + 4 & T ) s i n 2  ( 2 5 )  

and for the antiferrophase (AF) (Ix,,/= E )  that 

mw2(q)=a+yT+3yB2+4Ssin2 +(2(P+4cT)+24eE2) 

The configurations, their energy density U and their stability boundaries with 
corresponding soft mode wavevector (under the gauge - a = y = 1)  are presented in 
table 1 .  

Table 1. Explicitly calculated stability boundaries. 

(PI x.=O 
V=O 

soft made stability boundary 

q = o  T =  1 
q = n  T =  ( I  -4p) / (16e+I)  
cas(q)= -(/3+4cT)/(46) - I + T + ~ ~ + ~ E T + ~ S + ( P + ~ E T ) ' / ( ~ S ) = O  

soft mode stability boundark 

q = O  T =  1 
1+2p 

q = "  T=-  
1 - 8 8  

cos(q)=  -(P+4eT)l(4S) 2 + ( 8 e  - ~ ) T + ~ ~ + ~ S + ( ~ + ~ E T ) ' / ( ~ S ) = O  

(AF) 

( T ( l 6 e +  l ) + 4 8  - I)' 
4(168 + I )  

y = -  

soft mode stability boundar) 

1-40 T=- 
I + 1 6 ~  

7 -  1 +2(8  +4eT)+(3+24e)  [ - -TI  
1 6 e + 1  

~ = -( 8 +4e  ( .I [ "1 1 6 ~ + l  -2T))/(46) +6+( p +4c (3  [ "1 16r+l  -2T))*/(46) = 0 
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